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Abstract

In this project a chaotic double pendulum system is analysed. First, the equations of

motion for the system is found and numerically integrated to conclude chaotic behaviour.

An experiment is then conducted, finding that the lab system exhibited chaotic behaviour.

Furthermore, a linear model for small oscillations of the system is developed, and

theoretical values for the eigenmode frequencies produced. An experiment is then

conducted to find these frequencies. The experiment and the theory agreed on the

mean-valued frequencies 0.86Hz and 0.65Hz.

Resumé

I dette projekt analyseres et kaotisk dobbelt pendulsystem. Først findes

bevægelsesligningerne for vores system og integrerer disse numerisk for at p̊avise kaotisk

opførsel. Dernæst udføres et eksperiment som p̊aviste kaotisk opførsel i et virkeligt

dobbelt pendulsystem. Derudover udvikles en lineær model for små udsving af systemet,

og teoretiske værdier for eigensvingsnings-frekvenserne bestemmes. Dernæst udføres et

eksperiment for ogs̊a at finde disse frekvenser empirisk. Eksperimentet og teorien gav

begge middelfrekvenserne 0.86Hz og 0.65Hz.
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Classical analysis of chaotic pendulums The focus of the project

Introduction

In this project, we will analyze the movement of a chaotic double pendulum system. The

double pendulum system in question consists of two connected pendulums; an upper pendu-

lum and a lower pendulum. The upper pendulum rotates around a fixed pivot point, while

the lower pendulum rotates around the end point of the upper pendulum. Even though

this system in entirely classical, it is very difficult to predict the motion of the system. The

reason for this can be explained by the concept of chaos.

Determinism and chaos

All classical systems are what is called deterministic. This means that if you know the

state of the system (the values of the degrees of freedom) at one time, you can predict the

motion of the system, both forwards and backwards in time. You do this by finding the

Equations which governs the time evolution of the system. This is in theory true for all

classical systems. However, some nonlinear systems are so sensitive to initial conditions

that it becomes practically impossible to measure these initial conditions precisely enough

to make long term predictions. This is what is call chaotic behaviour, and the double

pendulum system exhibits such behaviour.

The focus of the project

We have chosen to focus our analysis on to major things. Those things are

1. showing that the double pendulum behaves chaotic.

2. finding a linear approximation to the system for small oscillations.

This allows us to show both qualitative and quantitative behaviour of the chaotic double

pendulum system. Furthermore, knowing how the system behaves both in the linear and

nonlinear regime gives us a good understanding of the overall behaviour of the system.
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Classical analysis of chaotic pendulums Finding the equations of motion

The theoretical analysis

In this chapter we are going to find the equations governing the time evolution of our chaotic

pendulum system. Once we have the equations we seek, we will find a linear approximation

to the system, and analyse how it behaves when the oscillations of the pendulums are small.

Finding the equations of motion

In order to properly analyse the behaviour of our chaotic pendulum system, we need to

know how it changes with time. In other words; we need to find the equations of motion

(EOMs) describing the system. There are several different ways to go about finding them,

but the approach we took was that of Lagrangian Mechanics. The reason being, that

Lagrangian Mechanics gives a step by step recipe to finding the the equations of motion.

Furthermore, with Lagrange Mechanics, we can find the EOMs knowing only the total

kinetic and potential energy of the system [1].

The procedure is as follow (here ẋ means the derivative of x with respect to time):

1. Find a set of degrees of freedom q1, ..., qn sufficient to describe the system.

2. Find the Lagrange of the system, L = T −U where T is the total kinetic energy of the

system and U is the total potential energy of the system.

3. Find the conjugate momenta pi to all qi defined as follows:

pi ≡
∂L

∂q̇i
(2.1)

4. Use all the equations (1.1) to solve for all the q̇i i.e. find the EOM’s for all qi.

q̇i = fi(q1, ..., qn, p1, ..., pn) (2.2)

5. Now find the EOM’s for all pi using the Euler-Lagrange Equation.

q̇i =
d

dt

∂L

∂q̇i
=
∂L

∂qi
(2.3)
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Classical analysis of chaotic pendulums Finding the equations of motion

According to step 1 we have to find a sufficient set of degrees of freedom (also called

coordinates) to describe our system. As our system consists of two connected pendulums,

it seems natural to use angles with respect to vertical(one for each pendulum) as our

coordinates. We have chosen our coordinate θ1 and θ2 as seen on the figure bellow.

Figure 2.1: Our system consisting of two solid rods connected to each other.

Now to the second step; finding the Lagrange of our system. To do this, we first need to

find T and U . Lets start by finding T , the total kinetic energy. To do this we recall that

the total kinetic energy of an object, which is both translating and rotating about its center

of mass (COM), is

T =
1

2
mv2cm +

1

2
Iθ̇2

where m is the mass of the object, vcm is the speed of the COM, I is the moment of inertia

about the COM and θ̇ is the angular velocity about the COM. The kinetic energy of the

first pendulum rod now becomes easy to find. Since the rod is moving in a circle about A,

vcm = L1θ̇1, where L1 is the length from A to the COM of the pendulum rod. Furthermore,

the rod is also rotating about its COM with an angular velocity θ̇1. The kinetic energy T1

of the first pendulum rod can thus be written as

T1 =
1

2
m1(L1θ̇1)

2 +
1

2
I1θ̇1

2
=

1

2
(m1L

2
1 + I1)θ̇1

2
(2.4)

Now to the kinetic energy of the second pendulum rod. Since the COM of this pendulum

rod is moving in a more complicated way, we need to do something else to find its speed.

The trick is to write the position of the COM in Cartesian coordinates.

X = R1 sin(θ1) + L2 sin(θ2) , Y = R1 cos(θ1) + L2 cos(θ2)
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Classical analysis of chaotic pendulums Finding the equations of motion

Where L2 is the length from B to the COM of the second rod. We now differentiate the

above equations with respect to time.

Ẋ = R1 cos(θ1)θ̇1 + L2 cos(θ2)θ̇2 , Ẏ = −R1 sin(θ1)θ̇1 − L2 sin(θ2)θ̇2

We now recall that in Cartesian coordinates, v2cm = Ẋ2 + Ẏ 2, which means that we can now

find an expression from v2cm. Using appropriate trigonometric identities, we find that

v2cm = (R1θ̇1)
2 + (L2θ̇2)

2 + 2R1L2θ̇1θ̇2 cos(∆θ)

Where ∆θ = θ2 − θ1 Since we know that the second pendulum rod is rotating about its

COM with an angular velocity θ̇1 + θ̇2 we can now write the total kinetic energy of the

second pendulum rod T2 as

T2 =
1

2
m2R

2
1θ̇1

2
+

1

2
(m2L

2
2 + I2)θ̇2

2
+m2R1L2θ̇1θ̇2 cos(∆θ) (2.5)

Now that we how both T1 and T2 we can write an expression for the total kinetic energy T

of the system.

T =
1

2
(m1L

2
1 +m2R

2
1 + I1)θ̇1

2
+

1

2
(m2L

2
2 + I2)θ̇2

2
+m2R1L2θ̇1θ̇2 cos(∆θ)

Lets define some constant, so that we can write T in a more compact form. Let

α = m1L
2
1 +m2R

2
1 + I1 , β = m2L

2
2 + I2 , γ = m2R1L2 (2.6)

We can then write T as follow.

T =
1

2
αθ̇1

2
+

1

2
βθ̇2

2
+ γ cos(∆θ)θ̇1θ̇2 (2.7)

Now that we finally have T we can move on to finding U . The only potential energy in our

system is the gravitational potential which is given by Ug = mgh. Here m is the mass of

the object, g is the local gravity constant on Earth and h is the height of the COM of the

object above Ug = 0. If we chose Ug = 0 to be at the height of A (see figure 2.1) we can

write the potential energy of the two pendulum rods as follow.

U1 = −m1gL1 cos(θ1) , U2 = −m2g(R1 cos(θ1) + L2 cos(θ2)) (2.8)
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Classical analysis of chaotic pendulums Finding a linear approximation

Where U1 and U2 are the potential energies of the first and second pendulum rod respec-

tively, and L1 is the length from A to the COM of the first pendulum rod. We can now

write the total potential energy U of our system as follow.

U = −g[(m1L1 +m2R1) cos(θ1) +m2L2 cos(θ2)]

Lets define some new constants, so that we can write U in a more compact form. Let

δ = g(m1L1 +m2R1) , ε = gm2L2 (2.9)

We can now write U as follow.

U = −[δ cos(θ1) + ε cos(θ2)] (2.10)

Now we can finally write the Lagrange L of our system. It is

L =
1

2
αθ̇1

2
+

1

2
βθ̇2

2
+ γ cos(∆θ)θ̇1θ̇2 + [δ cos(θ1) + ε cos(θ2)] (2.11)

Now we can move on to step 3; finding all the conjugate momenta pi. In our case there are

two, and we just find them by differentiating L with respect to θ̇1 and θ̇2.

p1 =
∂L

∂θ̇1
= αθ̇1 + γ cos(∆θ)θ̇2 (2.12)

p2 =
∂L

∂θ̇2
= βθ̇2 + γ cos(∆θ)θ̇1 (2.13)

Now we move on to step 4; finding the EOMs for all qi. This means that we need to find θ̇1

and θ̇2 in terms of p1 and p2. To do so, we solve the linear system of equations consisting

of equations (2.21) and (2.22). The solutions for θ̇1 and θ̇2 are.

θ̇1 =
p1β − p2γ cos(∆θ)

αβ − γ2 cos(∆θ)2
(2.14)

θ̇2 =
p2α− p1γ cos(∆θ)

αβ − γ2 cos(∆θ)2
(2.15)

At long last we have reached step 5; finding the EOMs for all pi. To do this we just use the

Euler-Lagrange equation.

ṗ1 =
∂L

∂θ1
= γ sin(∆θ)θ̇1θ̇2 − δ sin(θ1) (2.16)

ṗ2 =
∂L

∂θ2
= −γ sin(∆θ)θ̇1θ̇2 − ε sin(θ2) (2.17)

Now that we have the EOMs of our system, we are ready to move on with the analysis of

our chaotic pendulum system.
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Classical analysis of chaotic pendulums Finding a linear approximation

Finding a linear approximation

In the previous section we find the EOMs of our chaotic pendulum system. Lets take a

closer look at those equations. The first thing we notice is that the equations are not linear.

They are so called nonlinear ordinary differential equations. This usually suggests that we

can not find analytic solutions to the equations. However, one thing we can do is linearize

the nonlinear system in the vicinity of a fixed point [2]. First, what is a fixed point? A

fixed point is a set of values

X∗ = (q∗1, ..., q
∗
n, p
∗
1, ..., p

∗
n) such that q̇i = 0, ṗi = 0 ∀i

In other word, the fixed points are the configurations of the system which does not change

over time. Second, what does it mean to linearize the nonlinear system in the vicinity of

a fixed point? To answer that, we start by writing the EOMs of the system as a vector

differential equation of the form.

Ẋ = f(X) (2.18)

Equation (2.19) can also be expressed in component form.
ẋ1
...

ẋn

 =


f1(x1, ..., xn)

...

fn(x1, ..., xn)


Here f1, ..., fn are the EOMs of the system. Now, what happens if we make a small pertur-

bation η away from a fixed point, in such a way that

X = X∗ + η (2.19)

First we notice that Ẋ = η̇ since X∗ is constant. This means that the EOMs for η and X

are the same. Let us now look at the EOM for ηi and xi.

η̇i = ẋi = fi(x1, ..., xn) = fi(x
∗
1 + η1, ..., x

∗
n + ηn) (2.20)

Using multi variable Taylor series expansion about X∗, we find that

η̇i =
∂fi
∂x1

∣∣∣∣
X∗
ηi + ...+

∂fi
∂xn

∣∣∣∣
X∗
ηn + Higher Order Terms
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Classical analysis of chaotic pendulums Eigenmodes and their periods

If we neglect the small higher order terms, we now have a system of linear differential

equations which tells us how η (and by extension X) changes with time near X∗. This

is what it means to linearize in the vicinity of a fixed point. We can write the system of

equations in matrix form as shown bellow.

η̇ = J η (2.21)

The matrix J is called the Jacobian matrix, and it’s given by

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn


X∗

Now we have the tools to study the behaviour of our chaotic pendulum system near any

fixed point. We choose to focus on the one stable fixed point of our system (stable meaning

that perturbations do not grow exponentially at that fixed point). That is the point

X∗0 = (θ1, θ2, p1, p2) = (0, 0, 0, 0)

This is just the point at which the two pendulum rods are hanging completely still and

pointing straight down. Now we can try to find the solutions to equation (2.21) for our

particular J matrix. Since we are dealing with a system of first-order equations, lets test if

η = veλt is a solution to (2.21).

η̇ = J η ⇒ λveλt = J veλt , eλt 6= 0 ∀t ⇒ λv = J v (2.22)

Hence η = veλt is a solution to (2.21) if v is an eigenvector of J with the corresponding

eigenvalue λ. Since (2.21) is a linear equation, we know that linear combinations of solutions

are also solutions. This means that

η =
n∑
i=1

civie
λit (2.23)

is a solution. It turns out that this is also the complete solution to equation (2.21). Now that

we can solve the linear system of equations, we can find out how any small perturbation

η away from X∗0 evolves with time. We will now look further into some very specific

perturbations; the eigenmodes of our system.
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Classical analysis of chaotic pendulums Eigenmodes and their periods

Eigenmodes and their periods

Now that we know how to linearize our system about its stable fixed point, we can begin to

look further into the behaviour of the system. Lets start by looking at the complete solution

to a linearized system we found in the last section. If we choose our initial condition to be

η(0) = ci vi we get the specific solution

η
i
(t) = ci vie

λit , ci ∈ C (2.24)

This mean, that if we start the system at any initial condition η
0

for which η
0
∈ span(vi)

then η(t) ∈ span(vi) ∀t. The set of solutions for which η(t) ∈ span(vi) ∀t, we will call the

eigenmode corresponding to vi. Because all of the eigenvectors are linearly independent, we

know that span(vi) ∩ span(vj) = {0} ∀i, j. Therefore solutions from different eigenmodes

must be linearly independent. Now, lets look at the eigenmodes for a special case of system.

These systems all have eigenvectors which comes in pairs of aj ± ibj with corresponding

eigenvalues λj = ±iωj. Using Euler’s formula: eiθ = cos(θ) + i sin(θ), we can rewrite the

real part of (2.24) as follow.

η =
n∑
i=j

r1j [aj cos(ωjt)− bj sin(ωjt)] + r2j [aj cos(ωjt) + bj sin(ωjt)] (2.25)

Where r1j , r
2
j ∈ R. Like the general solution to linear systems, the above equation is a

sum of solutions from different eigenmodes. For these particular systems, we can pair up

eigenmode solutions with corrresponding eigenvalues ±iωj to make harmonic oscillations

with the frequencies given by

fj =
ωj
2π

(2.26)

Equations (2.25) and (2.26) are important to us because they give us a way to test the

predictions of our linear model (e.i. the eigenmode frequencies fi). To do this, we would of

cause need to measure the eigenmode frequencies experimentally. One could imagine doing

this by first filming small oscillations of a chaotic pendulum. One could then use software

to track the motion of the pendulum and use Fourier-analysis to decompose its trajectory

and find the eigenmode frequencies. We will be doing this in the following chapters.
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Classical analysis of chaotic pendulums Finding a method for simulating the system

Simulation of the system

In this chapter we will try to simulate the movements of the double pendulum. All simula-

tions are done assuming that the two pendulums are uniform rods with a mass of 1 kg and

a length of 2 m. Using these properties, the minimum total energy of the system is -39.3 J.

Finding a method for simulating the system

Using the equations of motion we just derived, we simulate the motion of the pendulums

in MatLab using the standard Euler method [2], so that:

θ1,n+1 = θ1,n + θ̇1 dt , θ2,n+1 = θ2,n + θ̇2 dt

p1,n+1 = p1,n + ṗ1 dt , p2,n+1 = p2,n + ṗ2 dt

Where dt is a small increase in time. We set the value of dt to 0.01 s. This approach seems

to result in unexpected behaviour. To check if something is wrong with the simulator, we

plot the total energy of the system as a function of time. Since we do not take any non-

conservative forces into account, we expect the total energy to remain unchanged.

Figure 3.1: The variation in energy over time using Euler integration with the following

initial conditions: θ1 = π
2

, θ2 = π
2

, p1 = 0 , p2 = 0 .

Page 9 of 37



Classical analysis of chaotic pendulums Finding a method for simulating the system

We see that the total energy of the system does in fact decrease significantly over time,

which can only be explained by either a mistake in our equations or our program, or a

general fault in our method. One such general fault could be that Euler integration is not

good enough if we use a dt of 0.01 s. Choosing a smaller dt is not an option, as that would

cause our simulation to run too slowly. This means that we have to look to other methods

than Euler integration. One such method is the Runge-Kutta Method (RK4) for numerical

integration of a set of ordinary differential equations [2]. This method uses a weighted

average of four increments for each step in the following way:

f(~xn) =


f1(~xn)

f2(~xn)

f3(~xn)

f4(~xn)


~a = f (~x0) , ~b = f

(
~x0 + ~a

dt

2

)
, ~c = f

(
~x0 +~b

dt

2

)
, ~d = f (~x0 + ~c dt)

xn+1 = xn +
(
~a+ 2~b+ 2~c+ ~d

) dt

6

Where f1, f2, f3 and f4 are the equations of motion (2.15), (2.16), (2.17) and (2.18). We

test this method in the same way as we tested Euler integration, by looking at the change

in the total energy over time:

Figure 3.2: The variation in energy over time using RK4 with the following initial conditions:

θ1 = π
2

, θ2 = π
2

, p1 = 0 , p2 = 0 .
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Classical analysis of chaotic pendulums Simulating the chaotic system

Since the change in the total energy of the system is in order of magnitude 10−5 and the

minimum total energy of the system is in order of magnitude 10, we can accept the RK4

method and assume that the total energy of the system will not change significantly.

Simulating the chaotic system

To show chaotic behaviour, we run the simulation twice with slightly different initial con-

ditions. If the system is in fact chaotic, we expect slightly different initial conditions to

result in trajectories, which suddenly begin to deviate greatly from one another at a certain

point in time. We choose to look at the lower pendulum, since it moves more freely than

the upper pendulum.

Figure 3.3: The variation in energy over time using RK4 with the following initial conditions:

θ1 = 2 , θ2 = 2 , p1 = 0 , p2 = 0 .

We see that the two experiments do in fact have trajectories, which suddenly begin to de-

viate greatly from one another at a certain point in time, and thus we can conclude that

the system is chaotic.
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Classical analysis of chaotic pendulums Set-up

The experimental aspect

In the interest of coupling theory with reality, two experiments are carried out in the lab

on an actual double pendulum. Firstly, we wish to document chaotic behaviour in the

pendulum, and secondly, we wish to numerically find the eigenmodes from experiments

within the linear regime, and compare them to the theoretical values.

Set-up

A double pendulum, as seen on Fig. 4.1, is mounted on a free axis roughly 1 meter from a

high-speed camera. Filming in 300 frames per second, it allows for clear images in 568x433

resolution, even though only every 10th frame is used in the analysis to reduce computing

time. In order to gain simple X/Y-values and angular data from the video, the freeware

program Tracker is used to pinpoint the coordinates of the end of the lower pendulum rod,

with an uncertainty of 1mm.

Masses and lengths of the rods are measured directly. The moments of inertia are deduced

from the period of each pendulum when separated from the other. To do that, we use the

pendulum period formula for small oscillations and the parallel axes theorem.

T = 2π

√
mgL

Iend
, Iend = ICOM +mL2 ⇒ ICOM =

T 2

4π2
mg L−mg L2 (4.1)

Figure 4.1: Our set-up with explanatory diagram, showing measured lengths.
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Classical analysis of chaotic pendulums Insanity experiment

Where m is the mass of the respective rods, T is the period for small oscillations, Iend is

the moments of inertia about the pivot points for each rod, ICOM is the moments of inertia

about the COM. The COM of each rod is in turn found by balancing it on a taut string

Upper pendulum Lower pendulum

m (888.3± 0.1)g (630.6± 0.1)g

T (1.508± 16 · 10−4)s (1.395 · 18 · 10−4)s

ICOM (0.0576± 4 · 10−4)kg ·m2 (0.0183± 4 · 10−4)kg ·m2

L (16.0± 0.1)cm (7.0± 0.1)cm

Furthermore, the distance between the pivot points R1 is measured as R1 = (35, 6±0.1) cm.

Insanity experiment

To confirm chaotic behaviour in the pendulum, two iterations of the same experiment are

carried out1 with the pendulums in the state of (−π
2
, π
2
, 0, 0), and letting the system go.

This, of course, is with the expectation that we will be given entirely different results.

Figure 4.2: The plot of each experiments’ θ2 and the difference between them vs. time.

1Video documentation available at bit.ly/1UalYi4 and bit.ly/1UalYi4
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Classical analysis of chaotic pendulums Finding the eigenmode frequencies

Using video tracking, plots of θ2 as a function of time are produced as seen on Fig. 4.2.

Making sure the paths are started from the same point, the difference of the two functions

are also seen. Clearly they are similar in the beginning, but the difference rises suddenly

and quickly around 5 seconds into the experiment.

Finding the eigenmode frequencies

The theoretically derived eigenmode frequencies, cf. the earlier chapter, is given by looking

at the Jacobian matrix for the fixed point X∗0. For our system, that will be a 4× 4 matrix.

Computing all partial derivatives and evaluating them at X∗0 we get the following matrix:

J =


0 0 β′ −γ′

0 0 −γ′ α′

−δ 0 0 0

0 −ε 0 0


X∗

, α′ =
α

αβ − γ2
, β′ =

β

αβ − γ2
, γ′ =

γ

αβ − γ2
(4.2)

Where α, β, and γ are defined in chapter 2 section 1. Using the definition of the constants,

we now construct a Matlab-script to find the eigenvalues of the Jacobian matrix for our sys-

tem. The eigenmode frequencies are then found using the equations λj = ±iωj and fj =
ωj

2π
.

The uncertainty of these eigenvalues are difficult to ascertain analytically, and so they are

found numerically. We simply computed the eigenvalues 106 times, using slightly different

values of measured quantities, taken from a norm-dist defined by their uncertainties. The

resulting outputs are used to form a new norm-dist, and their standard deviations is taken

to be the uncertainties. The theoretical eigenmode frequencies are then:

f1 = (0.651± 0.001)Hz f2 = (0.862± 0.002)Hz (4.3)

An experiment well within the linear regime (an angle certainly below 5 degrees), is carried

out2 and the data analyzed in Tracker. Through its built-in Fourier Analysis tool, the

eigenmode frequencies are found to be:

f1 = (0.66± 0.05)Hz f2 = (0.85± 0.05)Hz (4.4)

We now see, that both theoretical intervals lie within the experimental intervals.

2Video documentation available at bit.ly/1R2GKx6
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Classical analysis of chaotic pendulums Conclusion

Conclusion

We have successfully derived the equations of motion for the double pendulum system.

Using these equations and the Runge-Kutta method for numerical integration, we have

created a working simulation in MatLab. By starting the simulation with two slightly

different sets of initial conditions, we have shown chaotic behaviour. This chaotic behaviour

has also been demonstrated in the lab. We have found a linear approximation to the

system for small angles and found the frequencies of the eigenmodes both theoretically

and experimentally, and we have shown that the experimental values do agree with our

expectations from the theoretical calculations.
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Simulation x,y-plot

% First year project "The Double Pendulum"

% Authors:

% Christian Schioett - BCN852

% Rasmus Nielsen - JBZ701

% Thue Nikolajsen - QRD689

% Date 18/03 2016

close all; clear all; clc;

% This is the beginning of the program

% Variables get set

g = 9.82; % local gravity constant

dt = 0.01; % time step size

m = [888.3 630.6]*10^-3;

R = [35.6 33.9]*10^-2;

L = [16.02 7.01]*10^-2;

P = [1.5068 1.3951];

I(1) = ( P(1)^2 * g/(4*pi*pi) - L(1) ) * m(1) * L(1);

I(2) = ( P(2)^2 * g/(4*pi*pi) - L(2) ) * m(2) * L(2);

% state-vector

S = [pi/2, -pi/2, 0, 0];

% Constants important for computations

k(1) = m(1)*L(1)^2 + m(2)*R(1)^2 + I(1);
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k(2) = m(2)*L(2)^2 + I(2);

k(3) = m(2)*R(1)*L(2);

k(4) = g*m(1)*L(1) + g*m(2)*R(1);

k(5) = g*m(2)*L(2);

% Conversion to Cartesian coordinates

x(1) = sin(S(1))*R(1); y(1) = -cos(S(1))*R(1);

x(2) = x(1) + sin(S(2))*R(2); y(2) = y(1) - cos(S(2))*R(2);

% Setting up window

h = figure; set(gca,’Color’,’black’); set(gca,’fontsize’,10);

hold on; grid on; set(gcf,’Position’,[0 0 650 550])

xlim([-1; 1]); ylim([-1; 1]);

t = title(’Simulation of chaotic pendulums’); t.FontSize = 16;

lx = xlabel(’x / [m]’); ly = ylabel(’y / [m]’);

lx.FontSize = 12; ly.FontSize = 12;

% Equations of motion (and other functions)

D = @(X) ( k(1)*k(2) - k(3)^2 * cos(X(2)-X(1))^2 );

f{1} = @(X) ( X(3)*k(2) - X(4)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{2} = @(X) ( X(4)*k(1) - X(3)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{3} = @(X) k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(4)*sin(X(1));

f{4} = @(X) -k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(5)*sin(X(2));

% Variables to track path of tip of second pendulum are set

X = []; Y = [];

% The simulation is set to begin at 0 time.

T = 0;
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while T <= 10;

% Start of Runge Kutta integration

for i = 1:4

a(i) = f{i}(S);

end

for i = 1:4

b(i) = f{i}(S + dt/2*a);

end

for i = 1:4

c(i) = f{i}(S + dt/2*b);

end

for i = 1:4

d(i) = f{i}(S + dt*c);

end

S = S + dt/6 * (a + 2*b + 2*c + d);

% End of Runge Kutta integration

% Conversion to Cartesian coordinates

x(1) = sin(S(1))*R(1); y(1) = -cos(S(1))*R(1);

x(2) = x(1) + sin(S(2))*R(2); y(2) = y(1) - cos(S(2))*R(2);

% Tracks the motion of the tip of the second pendulum

X(length(X)+1) = x(2); Y(length(Y)+1) = y(2);

% If the window is open, update graphics

if ishandle(h)

cla; % Clear screen

plot(X, Y, ’r-’) % Plot path

line([0 x(1)], [0 y(1)], ’LineWidth’, 3) % Draw pendulum 1
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line([x(1) x(2)], [y(1) y(2)], ’LineWidth’, 3) % Draw pendulum 2

end

% Update time the simulation has been running

T = T + dt;

pause(10^-6);

end

% This is the end of the program
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Energy plot for Euler and RK4

% First year project "The Double Pendulum"

% Authors:

% Christian Schioett - BCN852

% Rasmus Nielsen - JBZ701

% Thue Nikolajsen - QRD689

% Date 18/03 2016

clear all; clc;

% This is the beginning of the program

% Variabler deklareres

g = 9.82;

m = [1 1];

dt = 0.01;

% Startbetingelser angives

R = [2 2];

L = R/2;

I = [1/12*m(1)*R(1)^2 1/12*m(2)*R(2)^2];

% State-vector is set

S = [pi/2 pi/2 0 0];

% Constants important for computations

k(1) = m(1)*L(1)^2 + m(2)*R(1)^2 + I(1);

k(2) = m(2)*L(2)^2 + I(2);
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k(3) = m(2)*R(1)*L(2);

k(4) = g*m(1)*L(1) + g*m(2)*R(1);

k(5) = g*m(2)*L(2);

% Equations of motion (and other functions) (X = S)

D = @(X) ( k(1)*k(2) - k(3)^2 * cos(X(2)-X(1))^2 );

f{1} = @(X) ( X(3)*k(2) - X(4)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{2} = @(X) ( X(4)*k(1) - X(3)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{3} = @(X) k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(4)*sin(X(1));

f{4} = @(X) -k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(5)*sin(X(2));

H = @(X) (f{1}(X)*X(3) + f{2}(X)*X(4))/2 - k(4)*cos(X(1)) - k(5)*cos(X(2));

for i=1:1:1000 % The loop is executed if the figure window is open

for a=1:4

u(a) = f{a}(S);

end

S = S + dt * u;

E(i) = H(S);

T(i) = i*dt;

end

% Setting up window

figure

plot(T,E,’- .’)

set(gca, ’YTickLabel’, num2str(get(gca, ’YTick’)’, ’%.8f’));

t2 = title(’The variation in total energy using Euler integration’); t2.FontSize = 12;

lx = xlabel(’t [s]’); ly = ylabel(’E [J]’);

lx.FontSize = 12; ly.FontSize = 12;

grid on
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% First year project "The Double Pendulum"

% Authors:

% Christian Schioett - BCN852

% Rasmus Nielsen - JBZ701

% Thue Nikolajsen - QRD689

% Date 18/03 2016

clear all; clc; close all;

% This is the beginning of the program

% Variables get set

g = 9.82;

m = [1 1];

dt = 0.01;

% Startbetingelser angives

R = [2 2];

L = R/2;

I = [1/12*m(1)*R(1)^2 1/12*m(2)*R(2)^2];

% State-vector is set

S = [pi/2 pi/2 0 0];

% Constants important for computations

k(1) = m(1)*L(1)^2 + m(2)*R(1)^2 + I(1);

k(2) = m(2)*L(2)^2 + I(2);

k(3) = m(2)*R(1)*L(2);

k(4) = g*m(1)*L(1) + g*m(2)*R(1);

k(5) = g*m(2)*L(2);
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% Equations of motion (and other functions) (X = S)

D = @(X) ( k(1)*k(2) - k(3)^2 * cos(X(2)-X(1))^2 );

f{1} = @(X) ( X(3)*k(2) - X(4)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{2} = @(X) ( X(4)*k(1) - X(3)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{3} = @(X) k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(4)*sin(X(1));

f{4} = @(X) -k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(5)*sin(X(2));

H = @(X) (f{1}(X)*X(3) + f{2}(X)*X(4))/2 - k(4)*cos(X(1)) - k(5)*cos(X(2));

for i=1:1:1000

% Start of Runge Kutta integration

for o = 1:4

a(o) = f{o}(S);

end

for o = 1:4

b(o) = f{o}(S + dt/2*a);

end

for o = 1:4

c(o) = f{o}(S + dt/2*b);

end

for o = 1:4

d(o) = f{o}(S + dt*c);

end

S = S + dt/6 * (a + 2*b + 2*c + d);

% End of Runge Kutta integration

E(i) = H(S);

T(i) = i*dt;

end

Page 25 of 37



Classical analysis of chaotic pendulums Energy plot for Euler and RK4

% Setting up window

figure

plot(T,E,’- .’)

set(gca, ’YTickLabel’, num2str(get(gca, ’YTick’)’, ’%.8f’));

t2 = title(’The variation in total energy using Runge Kutta integration’); t2.FontSize = 12;

lx = xlabel(’t [s]’); ly = ylabel(’E [J]’);

lx.FontSize = 12; ly.FontSize = 12;

grid on
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Simulation chaos experiment

% First year project "The Double Pendulum"

% Authors:

% Christian Schioett - BCN852

% Rasmus Nielsen - JBZ701

% Thue Nikolajsen - QRD689

% Date 18/03 2016

close all; clear all; clc;

% This is the beginning of the program

% Variables get set

g = 9.82;

m = [1 1];

dt = 0.01;

% Startbetingelser angives

R = [2 2];

L = R/2;

I = [1/12*m(1)*R(1)^2 1/12*m(2)*R(2)^2];

dif = [0 0.0001]; % This is the small difference in angle that we will add

% Constants important for computations

k(1) = m(1)*L(1)^2 + m(2)*R(1)^2 + I(1);

k(2) = m(2)*L(2)^2 + I(2);

k(3) = m(2)*R(1)*L(2);

k(4) = g*m(1)*L(1) + g*m(2)*R(1);
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k(5) = g*m(2)*L(2);

% Setting up window

h = figure;

hold on; grid on;

t = title(’Lower pendulum angles’); t.FontSize = 16;

lx = xlabel(’t [s]’); ly = ylabel(’\theta [rad]’);

lx.FontSize = 12; ly.FontSize = 12;

% Equations of motion (and other functions) (X = S)

D = @(X) ( k(1)*k(2) - k(3)^2 * cos(X(2)-X(1))^2 );

f{1} = @(X) ( X(3)*k(2) - X(4)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{2} = @(X) ( X(4)*k(1) - X(3)*k(3)*cos(X(2)-X(1)) ) / D(X);

f{3} = @(X) k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(4)*sin(X(1));

f{4} = @(X) -k(3)*sin(X(2)-X(1))*f{1}(X)*f{2}(X) - k(5)*sin(X(2));

for j=1:1:length(dif)

S = [pi/2 pi/2+dif(j) 0 0];

for i=1:1:1600

% Start of Runge Kutta integration

for o = 1:4

a(o) = f{o}(S);

end

for o = 1:4

b(o) = f{o}(S + dt/2*a);

end

for o = 1:4

c(o) = f{o}(S + dt/2*b);

end
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for o = 1:4

d(o) = f{o}(S + dt*c);

end

S = S + dt/6 * (a + 2*b + 2*c + d);

% End of Runge Kutta integration

v1(i) = S(1);

v2(i) = S(2);

T(i) = i*dt;

V(j,i) = S(2) - S(1);

end

plot(T, v2 - v1,’- .’)

end

plot(T,V(2,:)-V(1,:),’-g.’)

legend(’Pi/2’,’Pi/2 + 0.0001’,’Difference’,’Location’,’southwest’)
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Data processing code

% First year project "The Double Pendulum"

% Authors:

% Christian Schioett - BCN852

% Rasmus Nielsen - JBZ701

% Thue Nikolajsen - QRD689

% Date 99/99 2016

close all; clear all; clc;

% This is the beginning of the program

% We load the data

D1 = importdata(’real_data_one.txt’);

D2 = importdata(’real_data_two.txt’);

T = D1.data(:,1);

x1_B = D1.data(:,2);

y1_B = D1.data(:,3);

x1_A = D1.data(:,4);

y1_A = D1.data(:,5);

% We take loops into acount

lapsB = 0;

lapsA = 0;

for i = 1:length(T)

theta1_B(i) = atan2(x1_B(i), -y1_B(i));

theta1_A(i) = atan2(x1_A(i) - x1_B(i), y1_B(i) - y1_A(i));
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if i >= 2

dv = theta1_B(i) + 2*pi*lapsB - theta1_B(i-1);

if abs( dv ) > pi/2

if sign(dv) == -1

lapsB = lapsB + 1;

else

lapsB = lapsB - 1;

end

end

dv = theta1_A(i) + 2*pi*lapsA - theta1_A(i-1);

if abs( dv ) > pi/2

if sign(dv) == -1

lapsA = lapsA + 1;

else

lapsA = lapsA - 1;

end

end

end

theta1_B(i) = 2*pi*lapsB + theta1_B(i);

theta1_A(i) = 2*pi*lapsA + theta1_A(i);

end

x2_B = D2.data(:,2);

y2_B = D2.data(:,3);

x2_A = D2.data(:,4);

y2_A = D2.data(:,5);

lapsB = 0;
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lapsA = 0;

for i = 1:length(T)

theta2_B(i) = atan2(x2_B(i), -y2_B(i));

theta2_A(i) = atan2(x2_A(i) - x2_B(i), y2_B(i) - y2_A(i));

if i >= 2

dv = theta2_B(i) + 2*pi*lapsB - theta2_B(i-1);

if abs( dv ) > pi/2

if sign(dv) == -1

lapsB = lapsB + 1;

else

lapsB = lapsB - 1;

end

end

dv = theta2_A(i) + 2*pi*lapsA - theta2_A(i-1);

if abs( dv ) > pi/2

if sign(dv) == -1

lapsA = lapsA + 1;

else

lapsA = lapsA - 1;

end

end

end

theta2_B(i) = 2*pi*lapsB + theta2_B(i);

theta2_A(i) = 2*pi*lapsA + theta2_A(i);

end

% Calculating the differences between the data sets

delta_theta_A = theta2_A - theta1_A;

Page 32 of 37



Classical analysis of chaotic pendulums Data processing code

% Setting up window

h = figure; set(gca,’Color’,’white’); set(gca,’fontsize’,10);

hold on; grid on;

t = title(’Lower pendulum angles’); t.FontSize = 16;

lx = xlabel(’t [s]’); ly = ylabel(’\theta [rad]’);

lx.FontSize = 12; ly.FontSize = 12;

% We plot the difference over time

plot(T,theta1_A, ’b.’)

plot(T,theta2_A, ’r.’)

plot(T,delta_theta_A, ’g.’)

legend(’Experiment 1’,’Experiment 2’,’Difference’,’location’,’northwest’)

% This is the end of the program
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Frequencies and moments of inertia code

% First year project "The Double Pendulum"

% Authors:

% Christian Schioett - BCN852

% Rasmus Nielsen - JBZ701

% Thue Nikolajsen - QRD689

% Date 99/99 2016

close all; clear all; clc;

% This is the beginning of the program

% Variables get set

g = 9.82; % local gravity constant

% Physical properties are set

M = [888.3, 630.6]*10^-3;

R = [35.6, 33.9]*10^-2;

L = [16.0, 7.0]*10^-2;

T = [1.5068, 1.3951];

% Uncertainties in the physical properties

sigmaM = [0.01, 0.01]*10^-3;

sigmaR = [0.1, 0.1]*10^-2;

sigmaL = [0.2, 0.2]*10^-2;

sigmaT = [0.0001, 0.0001];

N = 10^6;
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for i = 1:N

% Choose values from norm-dist

m_i(1) = randn()*sigmaM(1) + M(1);

m_i(2) = randn()*sigmaM(2) + M(2);

R_i(1) = randn()*sigmaR(1) + R(1);

R_i(2) = randn()*sigmaR(2) + R(2);

L_i(1) = randn()*sigmaL(1) + L(1);

L_i(2) = randn()*sigmaL(2) + L(2);

T_i(1) = randn()*sigmaT(1) + T(1);

T_i(2) = randn()*sigmaT(2) + T(2);

% Compute the moments of inertia

I_i(1) = ( T_i(1)^2 * g/(4*pi^2) - L_i(1) ) * m_i(1) * L_i(1);

I_i(2) = ( T_i(2)^2 * g/(4*pi^2) - L_i(2) ) * m_i(2) * L_i(2);

% Constants important for computations

k(1) = m_i(1)*L_i(1)^2 + m_i(2)*R_i(1)^2 + I_i(1);

k(2) = m_i(2)*L_i(2)^2 + I_i(2);

k(3) = m_i(2)*R_i(1)*L_i(2);

k(4) = g*m_i(1)*L_i(1) + g*m_i(2)*R_i(1);

k(5) = g*m_i(2)*L_i(2);

n(1) = k(1) / (k(1)*k(2) - k(3)^2);

n(2) = k(2) / (k(1)*k(2) - k(3)^2);

n(3) = k(3) / (k(1)*k(2) - k(3)^2);

% Coefficient matrix

A = [[0,0,n(2),-n(3)]; [0,0,-n(3),n(1)]; [-k(4),0,0,0]; [0,-k(5),0,0]];
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% Find eigenvalues and eigenvectors of A

[V,D] = eig(A);

% Store the frquencies and moments of inertia

f1(i) = imag( D(1,1) ) / (2*pi);

f2(i) = imag( D(3,3) ) / (2*pi);

I1(i) = I_i(1);

I2(i) = I_i(2);

end
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Fourier data

Figure F.1: A fourier analysis of the movement of the upper pendulum.

Figure F.2: A fourier analysis of the movement of the lower pendulum.
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